Maharashtra State Board of Technical Education, Mumbai

LABORATORY PLAN (LP)

Academic Year: 2025-26

Institute Name & Code: K. K. Wagh Polytechnic, Nashik-3 (0078) Class: TYCH

Program and Code: Chemical Engineering (CH)

Course Index: CO604

Course Name: Mass Transfer Operation (MTO)

Course Code &. Abbr.:316303

(MTO)

Total Hrs: 48 Semesters: VIth Scheme: K Name of Faculty: Mr.P.M.Pathak

1. TEACHING AND EXAMINATION SCHEME

	Course Title				Learning Scheme					Assessment Scheme											
Cours e Code		Abb r	Course Category /s	Hrs./Wee		SL	NL H	Credit s	Paper Duratio	Theory			Based on LL & TL Practical			Based on SL		Total Mark			
				C L	T L	L L				n	IHAISAI		otal	FA- PR SA-PI			R SLA		s		
												Ma									
	MASS										X	X	X	n	X	n	X	n	X	n	
31630 3		MT O	DSC	4	-	4	2	10	5	03	30	70	100	40	25	10	25#	10	25	10	175

• Course Outcomes (COs): Theory & Practical

TYCH- Students will be able to achieve & demonstrate the following COs on completion of course based Learning.

CO No.	Course Outcomes					
CO1	Diffusion: Fundamentals and Applications in Mass Transfer					
CO2	Distillation					
CO3	Gas Absorption					
CO4	Liquid-Liquid Extraction					
CO5	Crystallization and Drying					

• Laboratory Learning Outcome (LLO): NA for I scheme

• Practical Plan:

Sr. No	СО	PrO	Title		erformance nned	Da Com	Remark/ Assessme nt Date	
1	a	1	Determination of the diffusion coefficient of a given gas or	Batch A	18/12/2025	Batch A	25/12/2025	

K-2

Sr. No	СО	PrO	Title		erformance nned	Da Com	Remark/ Assessme nt Date	
			vapour in air using a diffusion	Batch B	19/12/2025	Batch B	26/12/2025	
2	a	2	Determination of the diffusivity of a solute in a liquid medium using a diffusion cell	Batch A Batch B	25/12/2025	Batch A Batch B	01/01/2026	
			Experimental validation of		26/12/2025		02/01/2026	
3	a	4	Rayleigh's equation in a binary	Batch A	01/01/2026	Batch A	08/01/2026	
			distillation setup	Batch B	02/01/2026	Batch B	09/01/2026	
4		7	Determination of Vapour- Liquid Equilibrium (VLE)	Batch A	08/01/2026	Batch A	15/01/2026	
4	a	/	Data for a Binary Mixture	Batch B	09/01/2026	Batch B	16/01/2026	
_		17	Performance Evaluation of a Fractional Distillation Column	Batch A	15/01/2026	Batch A	22/01/2026	
5	a	17	for separation of binary	Batch B	16/01/2026	Batch B	23/01/2026	
			. Performance Evaluation of a	Batch A	22/01/2026	Batch A	29/01/2026	
6	e	14	Packed Column for Gas Absorption	Batch B	23/01/2026	Batch B	30/01/2026	
7			Determination of distribution coefficient of a	Batch A	29/01/2026	Batch A	05/02/2026	
	e	15	solute from a liquid mixture using a suitable solvent for Liquid-Liquid Extraction in a Mixer Settler unit	Batch B	30/01/2026	Batch B	06/02/2026	
8			Determination of the crystal	Batch A	05/02/2026	Batch A		
	a	16	yield and crystal size distribution by performing batch crystallization of a solution in a batch crystallizer	Batch B	05/02/2026	Batch B	12/02/2026	
9	d	18	Determination of the drying rate and equilibrium moisture	Batch A	12/02/2026	Batch A	19/02/2026	
	u	10	content using a tray dryer	Batch B	13/02/2026	Batch B	20/02/2026	
10	b	9	Determination of pressure drop and flooding velocity in a	Batch A	19/02/2026	Batch A	26/02/2026	
	U	7	neaked observation column	Batch B	20/02/2026	Batch B	27/02/2026	
11	c	10	Determination of Height Equivalent to Theoretical Plates (HETP) in a Packed	Batch A Batch B	26/02/2026	Batch A Batch B	05/03/2026	
			Evaluation of the impact of solvent-to-feed ratio on the	Batch A	27/02/2026 05/03/2026	Batch A	06/03/2026 12/03/2026	
12	d	12	efficiency of liquid-liquid extraction.	Batch B	06/03/2026	Batch B	13/03/2026	

• Reference:

2. SUGGESTED LEARNING RESOURCES

	Seddested Eerming Resources					
Sr.No	Author	Title	Publisher with ISBN Number			
1	K.V. Narayanan, B. Lakshmikutty	Mass Transfer Operations: Theory and Application	CBS Publishers & Distributors Pvt. Ltd. 978-9354666094			
2	Robert E. Treybal	Mass Transfer Operations	McGraw-Hill 978-0070666153			
3	Warren L. McCabe, Julian C. Smith, Peter Harriott	Unit Operations of Chemical Engineering	McGraw-Hill 978-0072848236			
4	Binay K. Dutta	Principles of Mass Transfer and Separation Processes	PHI Learning 978-8120345187			
5	Christie J. Geankoplis	Transport Processes and Separation Process Principles	Pearson Education 978- 0131013674			
6	J.M. Coulson, J.F. Richardson	Chemical Engineering: Volume 1 & 2	Butterworth Heinemann 978- 0750644457 (Vol. 1), 978 0750644464 (Vol. 2)			
7	J.D. Seader, Ernest J. Henley	Separation Process Principles	Wiley 978-0470481837			
8	Morton M. Denn	Process Fluid Mechanics Prentice Hall 978- 0137232093	Prentice Hall 978-0137232093			

Sr.No	Link /	Description
	Portal	
1	COMSOL Multiphysics:	This versatile software is used for simulating various mass transfer processes, including diffusion, heat and mass transfer in packed beds, and distillation column performance. It helps in modeling concentration profiles, velocity distributions, and transport mechanisms in mass transfer systems.

3. SOFTWARE/LEARNING WEBSITES

Sr.No	Link /	Description					
	Portal						
		A widely used process simulation software in chemical engineering, Aspen					
2	Agnon Dlugg	Plus allows					
2	Aspen Plus:	the modeling and optimization of mass transfer operations such as distillation,					
		absorption, liquid-liquid extraction, and drying. It helps in designing					
		separation columns and evaluating mass transfer efficiency.					
	MATLAB:	MATLAB is a powerful tool for numerical analysis and simulation. It can be					
3		used to solve mass transfer equations, develop control algorithms for					
		distillation and absorption processes, and perform data analysis related to					
		separation processes.					
		CHEMCAD is an advanced process modeling software that enables					
4	CHEMCAD:	simulation, design, and optimization of distillation, absorption, and					
		extraction processes. It helps engineers analyze phase equilibria and mass					
		transfer coefficients for industrial applications.					

5	ANSYS Fluent:	ANSYS Fluent is a Computational Fluid Dynamics (CFD) software used to simulate fluid flow, heat, and mass transfer in separation processes such as packed columns, spray dryers, and evaporators. It is particularly useful for analyzing flow patterns and optimizing mass transfer equipment.
6	LabVIEW:	LabVIEW is widely used for data acquisition and process control in mass transfer experiments. It helps in monitoring distillation column performance, gas absorption rates, and drying kinetics through real-time data analysis.

Note:

• Teachers are requested to check the creative common license status/financial implications of the suggested online educational resources before use by the students

Mr.P.M.Pathak (Name & signature of staff)

Dr. P.S. Bhandari (Name & signature of HOD)